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ABSTRACT

Raindrop size sorting is a ubiquitous microphysical occurrence in precipitating systems. Owing to the

greater terminal fall speed of larger particles, a raindrop’s fall trajectory can be sensitive to its size, and strong

air currents (e.g., a convective updraft) can enhance this sensitivity. Indeed, observational and numerical

model simulation studies have confirmed these effects on raindrop size distributions near convective updrafts.

One striking example is the lofting of liquid drops and partially frozen hydrometeors above the environmental

08C level, resulting in a small columnar region of positive differential reflectivity ZDR in polarimetric radar

data, known as theZDR column. This signature can serve as a proxy for updraft location and strength, offering

operational forecasters a tool for monitoring convective trends. Beneath the 08C level, where WSR-88D

spatiotemporal resolution is highest, anomalously high ZDR collocated with lower reflectivity factor at hor-

izontal polarization ZH is often observed within and beneath convective updrafts. Here, size sorting creates a

deficit in small drops, while relatively large drops and melting hydrometeors are present in low concentra-

tions. As such, this unique raindrop size distribution and its related polarimetric signature can indicate updraft

location sooner and more frequently than the detection of a ZDR column. This paper introduces a novel

algorithm that capitalizes on the improved radar coverage at lower levels and automates the detection of this

size sorting signature. At the algorithm core, unique ZH–ZDR relationships are created for each radar ele-

vation scan, and positive ZDR outliers (often indicative of size sorting) are identified. Algorithm design,

examples, performance, strengths and limitations, and future development are discussed.

1. Introduction

The upgrade of the Weather Surveillance Radar-1988

Doppler (WSR-88D) with polarimetric capabilities

continues to fuel a resurgence in microphysical studies

of precipitating systems. The transmission/reception of

orthogonally polarized waves by these radars has pro-

vided a wealth of new information regarding the charac-

teristics of hydrometeors within precipitating systems. In

turn, forecasters have access to improved radar-based

hydrometeor classification (e.g., Park et al. 2009) and

quantitative precipitation estimation (e.g., Giangrande

and Ryzhkov 2008) algorithms. For a detailed overview

and discussion regarding commonly used polarimetric

radar variables, including radar reflectivity factor at

horizontal polarization ZH, copolar cross-correlation

coefficient rhv, specific differential phase KDP, and

differential reflectivity ZDR, the reader is referred to

Doviak and Zrnić (1993), Bringi and Chandrasekar

(2001), and Kumjian (2013a,b,c).

Perhaps more importantly, this new information can

highlight microphysical processes that reveal critical

details about the evolution of precipitating systems such

as thunderstorms. Polarimetric radar data can be used to

identify changes in the hydrometeor distribution within

various parts of a storm, potentially signaling imminent

convective growth or decay. For example, polarimetric
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radar can distinguish between drops of different

sizes—most notably via ZDR (Seliga and Bringi 1976)—

providing the ability to investigate microphysical pro-

cesses in greater detail.ZDR is proportional to the aspect

ratio of hydrometeors that are small relative to the radar

wavelength. Moreover, the magnitude of ZDR increases

with increasing dielectric constant for a given particle

size and shape. However, pure raindrops have a steady

dielectric constant, and their axis ratio increases mono-

tonically (i.e., they become more oblate) as their size in-

creases (e.g., Pruppacher and Beard 1970; Brandes et al.

2002). Therefore, operational ZDR data have great utility

for analyzing estimates of bulk drop size distributions

when used in conjunction with other radar variables.

Owing to their spherical shape, small drops tend to be

characterized by ZDR near 0 dB. At S band (WSR-88D

wavelength; approximately 10–11 cm),ZDR can increase

to near 5 dB for the largest drops (around 8mm in di-

ameter). For hydrometeors that are large relative to the

radar wavelength, ZDR can fluctuate wildly and may no

longer be proportional to the hydrometeor aspect ratio,

due to resonance scattering (Trömel et al. 2013). In turn,

characterizing hydrometeor shape via ZDR is consider-

ably more difficult when resonance scattering is present.

However, even the largest raindrops can be considered

sufficiently small relative to the radar wavelength when

using S-band data. The work presented herein focuses

purely on S-band radar data, such that ZDR is utilized

heavily to analyze raindrop sizes in a bulk sense.

a. Size sorting

Raindrop size sorting is a ubiquitous feature of pre-

cipitating systems. Generally, as raindrops increase in

size, so does their terminal fall speed. As a result, rain-

drops with different sizes can take considerably different

trajectories, which are sensitive to the airflow patterns

within a precipitating system (Marshall 1953; Gunn and

Marshall 1955; Kumjian and Ryzhkov 2012; Dawson

et al. 2015). In the simplest form of size sorting, the onset

of precipitation occurs when cloud droplets grow large

enough to fall toward the ground, while smaller droplets

remain suspended. Extending this concept further, large

drops reach the surface prior to small drops beneath a

nascent precipitating cloud, due to the greater terminal

velocity of the large drops. A common anecdote related

to such sorting is the initial ‘‘splat’’ of big drops

often observed underneath a growing cumuliform cloud.

Figure 1 offers an example (via a radar cross section) of

this initial differential sedimentation in developing cells.

Such a signature is fairly transient and vanishes once

smaller drops begin to reach the surface. In gen-

eral, this size sorting signature due to initial differential

sedimentation lasts no more than 5–10min, with ZDR

decreasing as more smaller drops contribute to the total

backscattered signal at lower-elevation radar scans

(Kumjian and Ryzhkov 2012). However, the polari-

metric signature of size sorting can be sustained for

much longer periods of time via the presence of strong

upward motion, such as a convective updraft. Only large

drops with terminal velocities exceeding that of the

updraft speed descend toward the ground, while smaller

drops can be suspended, lifted upward, or detrained

from the updraft. The resultant drop size distribution

(DSD) at low to midlevels (from the surface to several

kilometers aloft) is then skewed toward larger rain-

drops, with fewer small drops present. Thus, a sustained

size sorting signature can serve as a proxy for maturing

updraft location, potentially portending near-term cell

propagation and intensification. Such information has

large implications for the operational convective warn-

ing process.

Perhaps the most notable and documented polari-

metric signature of updraft-induced size sorting is the

ZDR column (e.g., Illingworth et al. 1987; Caylor and

Illingworth 1987; Wakimoto and Bringi 1988; Bringi

et al. 1991; Conway and Zrnić 1993; Brandes et al. 1995;

Jameson et al. 1996; Hubbert et al. 1998; Smith et al.

1999; Kennedy et al. 2001; Loney et al. 2002; Kumjian

and Ryzhkov 2008; Kumjian et al. 2012, 2014; Snyder

et al. 2015). A ZDR column is the by-product of large

drops being lofted by an updraft above the environ-

mental freezing level [see Kumjian et al. (2014) for a

summary of the mechanisms driving drop growth].

Stronger updrafts can result in a columnar layer of

positive ZDR extending several kilometers beyond the

08C level (Kumjian and Ryzhkov 2008). As a result, the

ZDR column can be used as a proxy for updraft location

and perhaps strength (with taller/broader columns po-

tentially suggesting a more robust updraft), making it a

favorable tool for convective nowcasting. These signa-

tures are often observed emanating upward from a

‘‘foundation’’ of anomalously high ZDR (for the associ-

ated range gate value of ZH) beneath the 08C level,

which is the lower-level size sorting signature described

in the previous paragraph. Figure 2 presents an example

of a ZDR column signature extending upward from a

zone of high ZDR beneath the 08C level.

Strong horizontal flow can also sustain size sorting of

hydrometeors (Kumjian and Ryzhkov 2012; Dawson

et al. 2014). Nonzero storm-relative flow horizontally

advects raindrops away from the parent cloud. Since

larger drops descend more rapidly than smaller drops,

there is less time for downstream advection by the

storm-relative wind. Therefore, a stronger storm-

relative wind field (over the depth of the sorting layer)

will cause a more apparent radar size sorting signature.
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In the case of a storm-relative wind field that changes

direction with height, size sorting may manifest via the

ZDR arc signature (Kumjian and Ryzhkov 2009, 2012),

which appears on the forward-flank reflectivity gradient

along the inflow region of a supercell. Here, the drop

size distribution can be characterized by a relatively low

number of larger drops (and water-coated ice particles)

and a lack of smaller drops (which have been advected

farther downstream in the forward-flank region). In turn,

the signature is characterized by significant, positive ZDR

values (generally greater than 2–3dB) collocated with low

to moderate reflectivity (around 30–40dBZ or less).

Dawson et al. (2014) found that this signature is re-

lated to the mean storm-relative wind vector over the

depth of the precipitation shaft above the layer con-

taining the signature. Thus, as the magnitude and shape

of the signature are correlated with the strength and

direction of the storm-relative wind field, this signature

can reveal critical information regarding the near-storm

environment—specifically, the likely presence of storm-

relative helicity favorable for low-level mesocyclo-

genesis. While such a capability does not offer explicit

prediction of tornadogenesis, it can signal a near-storm

environment favorable for tornadogenesis. Robust au-

tomated detection of this signature would likely benefit

operations considerably.

b. Operational application

Recent numerical simulations incorporating either

bin or bulk microphysical schemes have illustrated the

diagnostic potential of these polarimetric size sorting

signatures (Kumjian andRyzhkov 2009; Jung et al. 2010;

Kumjian and Ryzhkov 2012; Dawson et al. 2014;

Kumjian et al. 2014; Dawson et al. 2015; Snyder et al.

2015), highlighting the need for their incorporation into

operational radar analysis procedures. Moreover,

observational studies have confirmed the operational

applicability implied by these simulations. For ex-

ample, ZDR columns have exhibited a positive lagged

correlation with reflectivity-based metrics (e.g., the

ratio of the 60-dBZ volume to the 40-dBZ volume;

Picca et al. 2010; Kumjian et al. 2014). Such work

suggests that ongoing warning operations research

should focus on the creation and implementation of

FIG. 1. (left) Cross sections and (right) associated 1.88 elevation scans of (a) ZH and (b) ZDR. Note the higher

values of ZDR annotated in double black lines at the bottom of the developing precipitation core. These values

represent initial sedimentation of larger drops—a common size sorting occurrence. The 40- and 50-dBZ contours

are overlaid on ZDR for reference.
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algorithms that capitalize on the microphysical clues

offered by polarimetric radar.

Snyder et al. (2015) developed an automated ZDR

column algorithm that detects these signatures and

outputs a maximum height for each detection, providing a

diagnostic tool for assessing updraft evolution. At closer

ranges from radar, the algorithm has exhibited skill in

assessing updraft strength with more robust, organized

cells. Such next-generation radar algorithms can enable

more operational meteorologists to utilize the powerful

diagnostic capabilities of polarimetric radar. These al-

gorithms lessen the ‘‘data overload’’ of several new

variables by synthesizing polarimetric data into one

clear output—in this instance, a ZDR column height that

serves as a proxy for updraft location and strength.

However, at farther distances and with weaker, less

organized convection, the zone of lofted drops above the

08C level becomes small relative to the radar’s effective

beamwidth, resulting in a backscattered signal that can

easily be masked by other hydrometeors in the range

bin. Therefore,ZDR columns can become quite subtle or

even nonexistent, such that their utility often decreases

with more distant and/or shallower convection. Future

work may be able to quantify the decrease in skill via

objective verification of ZDR columns across a wide

distribution of ranges from radar.

Updraft-related size sorting does not only occur above

the 08C level, as previously described. Raindrop sorting

also occurs within and near updrafts at lower elevations.

Thus, radar signatures of low-level size sorting can sup-

plement ZDR columns by offering valuable information

regarding convective evolution at altitudes where im-

proved spatiotemporal radar coverage typically exists.

Figure 3 exhibits the utility of the low-level size sorting

signature in terms of nowcasting convective evolution.

Despite this capability, the low-level signature can be

more difficult to identify (relative to the ZDR column),

as ZDR is generally higher everywhere beneath the

melting layer (due to the dominance of liquid scatterers,

biota, and so on with intrinsic positive ZDR) than it is

above the melting layer. Whereas there is often high

contrast between a ZDR column and the ambient back-

ground ZDR, the contrast between a low-level size

sorting signature and its background ZDR tends to be

much lower. Considering the nowcasting utility of this

low-level signature, we are motivated to develop an

FIG. 2. (left) Cross sections and (right) associated 4.08 elevation scans of (a) ZH and (b) ZDR. Note the higher

values of ZDR extending above the 08C level represent the ZDR column, which is the result of liquid drops and

liquid-coated ice particles lofted by an updraft.
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algorithm that highlights all zones of hydrometeor size

sorting (both low-level and ZDR columns) and provides

some quantitative detail regarding the magnitude of

sorting. Such an algorithm would likely reduce the

analysis load on radar operators while simultaneously

enhancing their ability to synthesize polarimetric data

with more conventional datasets (e.g., reflectivity, veloc-

ity). Subsequently, it would supplement radar operators’

ability to nowcast convective evolution.

Paramount to this improvement would be the algo-

rithm’s capability to highlight imminent cell propagation

and intensification trends (on the order of 0–10min).

Forecasters frequently encounter convective situations

in which they must rapidly construct a downstream

warning area (e.g., polygon) to alert the public or clients

in a timely manner. In turn, a warning forecaster must

quickly assess cell evolution and synthesize radar and

mesoscale data to predict near-term storm motion. A

key component of this motion is cell propagation (e.g.,

deviant movement in supercells, upshear/downshear

MCS propagation), and such trends are not always clear

in conventional datasets.With improved visualization of

these trends, forecasters could better anticipate overall

storm motion and more appropriately tailor the size and

shape of short-fused storm-based warnings. Addition-

ally, decision support meteorologists could offer even

greater detail on the forecast timing and location of

convective impacts.

2. Algorithm overview

The size sorting identification algorithm described in

this paper utilizes polarimetric data from operational

WSR-88D sites to estimate the magnitude of size sorting

via a rapidly updating product (on the order of 2min),

which will be described later in this work. Hereafter, this

algorithm is referred to as the Thunderstorm Risk Esti-

mation from Nowcasting Development via Size Sorting

(TRENDSS). The TRENDSS algorithm and its pre-

processing routines are managed within the Warning

DecisionSupportSystem–Integrated Information (WDSS–II;

Lakshmanan et al. 2007) software framework.

a. Preprocessing

First, Level-II radar data are ingested into WDSS–II

to generate Level-III polarimetric data that are equiv-

alent to radar fields produced by the WSR-88D radar

product generator. This produces smoothedZDR and rhv
fields and estimates the heights of the melting layer top

and bottom from the melting layer detection algorithm

(MLDA; Giangrande et al. 2008). By smoothing the

original Level-II data (from 0.58 to 18 azimuthal reso-

lution via a linear combination), the reduction in vari-

ance within these radar fields makes themmore suitable

for algorithm processing. After this step, theZH data are

quality controlled using a reflectivity quality control al-

gorithm (Lakshmanan et al. 2007, 2010) to remove re-

turns fromnonhydrometeors (e.g., filter clutter, biota). The

smoothed ZDR, rhv, MLDA, and quality controlled ZH

fields are the four radar inputs into the TRENDSS al-

gorithm. As a backup to the MLDA and to provide the

TRENDSS algorithm with a first-guess field of the

FIG. 3. The 0.58 PPIs from the Goodland, KS (KGLD), radar of

(a) ZH and (b) ZDR at 0133 UTC and (c) ZH at 0138 UTC 8 Aug

2015. Note the high values of ZDR (.3 dB) associated with ZH

around 25–35 dBZ in (a) and (b). Five minutes later, there is

a dramatic increase in ZH.
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melting level and a ceiling to stop data collection, the

environmental 08 and2108C levels are derived from the

13-km Rapid Refresh (RAP; Benjamin et al. 2016)

model, serving as the fifth and final algorithm input.

b. Algorithm core

Fundamentally, the TRENDSS algorithm aims to

identify radar gates representative of raindrop size

sorting signatures. As previously discussed, such signa-

tures are characterized by ZDR that is anomalously high

for the corresponding value of ZH in a range gate.

Thus, some ZH–ZDR relationship must be constructed

to identify anomalously high ZDR values. To do so,

TRENDSS first filters range gates that may be domi-

nated by scatterers deemed unsuitable for analysis.

Various ZH, ZDR, and rhv thresholds are utilized, with

the specific values dependent upon the position of

the gate relative to the melting layer (determination of

microphysical layers and resultant algorithm ‘‘stages’’

discussed later in this section). Table 1 offers specifics

regarding these thresholds.

All thresholds were determined via a heuristic process

in which numerous cases from a diverse set of regions

and seasons were analyzed (Table 2). For all gates, re-

gardless of height, only ZDR ,6dB is considered suitable

for analysis. While ZDR values above this threshold could

be associatedwithmeteorological scatterers (and potential

size sorting), the possibility of nonmeteorological con-

tamination (insects, birds, etc.) increases considerably

with such high values (e.g., Wilson et al. 1994). Below

the melting layer, a $15-dBZ ZH threshold was chosen

to further reduce contamination from biota and other

weak returns with potentially questionable data quality.

Additionally, a $0.9 rhv threshold was utilized, which

serves to filter nonmeteorological scatterers and non-

Rayleigh scatterers (e.g., larger melting hailstones), which

may have a wildly fluctuating ZDR.

Within and above the melting layer, the ZH threshold

is increased to 25dBZ to reduce contributions from ice

crystals, which can exhibit high ZDR and modest ZH, yet

are not necessarily indicative of storm intensification.

The rhv threshold is also further tightened within and

above the melting layer, where the lower bound in-

creases to 0.98 and 0.97, respectively, to mask ice crystal

contamination. The threshold is slightly higher within

the melting layer, as isolated gates characterized by very

high ZDR (likely composed of initially melting snow)

still exhibited rhv values around 0.95–0.97 during sub-

jective case analysis. Consistent with ice crystal gates, we

do not wish to highlight these gates, owing to the low

probability they are associated with size sorting.

There of course remains considerable uncertainty

regarding hydrometeor distributions and the corre-

sponding observed polarimetric values within range

gates. As such, these filtering values may at times under-

or overcensor data; however, prior literature and anal-

ysis of TRENDSS output from numerous cases suggests

these current values are suitable for operational use.

Additionally, future iterations of the algorithm could

use dynamic threshold values that more appropriately

filter bins unsuitable for analysis. For example, these

values could be sensitive to the estimated precipitation

regime (e.g., tropical, continental).

With the remaining gates now deemed suitable for

processing, TRENDSS approximates up to threeZH–ZDR

relationships for each elevation scan. These three re-

lationships consist of one below themelting layer (stage 1),

one within themelting layer (stage 2), and one above the

melting layer (stage 3). Radar range gates are classified

into one of these stages based upon output from the

MLDA with the RAP serving as a backup. These three

stages are distinct from one another such that the esti-

mated ZH–ZDR relationships are at least modestly tai-

lored to the layer being analyzed. For example, ZDR

within stage 3 is less likely to increase with increasingZH

due to the predominance of frozen scatterers. Meanwhile,

ZDR typically exhibits a monotonic increase with in-

creasing ZH in stage 1. Blending data from these stages

would result in an estimated relationship that is less rep-

resentative of the precipitation regimes of all range gates.

At all three stages, we are confident that the majority

of TRENDSS detections will be associated with size

sorting. The well-established nature of the ZH–ZDR re-

lationship below the melting layer, combined with the

filtering thresholds described above, ensures that low-

level detections are very likely from updraft-enhanced

sorting, differential sedimentation, or strong storm-

relative flow. Our motivation to extend the TRENDSS

domain to colder temperatures (i.e., within/above the

melting layer) is based in our desire to extend ZDR

TABLE 1. Various thresholds for different radar variables and microphysical layers are presented. Range gates passing these criteria are

retained for analysis by the TRENDSS algorithm.

Layer Reflectivity (dBZ) Differential reflectivity (dB) Correlation coefficient

Above melting layer $25 ,6 $0.97

Within melting layer $25 ,6 $0.98

Below melting layer $15 ,6 $0.9
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anomalies to the problem of ZDR column identification.

Thus, future iterations of the algorithm could potentially

predict cell intensification via an integrated height

product. For the current iteration, we still retain the

three-stage approach. Although this does open the al-

gorithm to false detections from, for example, ice crys-

tals (discussed in further detail in section 4), the filtering

thresholds within/above themelting layer are quite strict

and were shown to reduce false detections considerably

in heuristic testing. Moreover, increasing the domain’s

vertical coverage increases the likelihood that size

sorting will be identified in regions with poor radar

coverage and that these identifications will be main-

tained during smoothing/postprocessing.

Within each stage of each elevation scan, TRENDSS

then approximates a unique ZH–ZDR relationship by

creating 5-dB bins (e.g., 15–20, 20–25dBZ) and calcu-

lating the mean m and standard deviation s of ZDR

within each bin. The mean and standard deviation for a

5-dB bin at each stage for each elevation angle serves as

the expected value and the dispersion (or noisiness) of

ZDR, respectively. Of note, statistics are not calculated

for a particular bin if fewer than 20 sampled range gates are

available (due to either low coverage of precipitation and/

or filtering of unsuitable bins). In such instances, expected

ZDR values within stages 1 and 2 are governed by the

following equation from Cao et al. (2008):

Z
DR

5 10(22:685731024Z2
H
10:04892ZH21:4287),

where ZH and ZDR are expressed in logarithmic scale.

This equation was developed from two-dimensional

video disdrometer data recorded at different sites in

Oklahoma. We chose the equation based on its devel-

opment from a large dataset collected from all seasons

over a 2-yr period (May 2005–May 2007). We acknowl-

edge that a single equation will not accurately capture all

precipitation regimes, but it at least offers a basis for

continued algorithm operation when data are sparse.

Within stage 3, expected ZDR is set to 0 dB, as most

frozen Rayleigh scatterers have intrinsic ZDR near this

value. Additionally, for all stages and bins, the default

standard deviation is set to 0.5 dB, which was found to be

sufficiently representative for most continental convec-

tion in our subjective analysis of over 20 cases (Table 2).

Indeed, this value differs only slightly from the expected

standard deviation of 0.2–0.3 dB theorized by Ryzhkov

et al. (2005). Similar to concerns on a singular ZH–ZDR

equation, these values are not optimized for all situations,

but in the brief instances of very isolated, developing

TABLE 2. Events analyzed to define the TRENDSS radar parameter thresholds. The four events used to validate the TRENDSS algorithm

are marked with an asterisk (*).

Date Time (UTC) Region General storm mode comments

19/20 May 2013 1904–0159 Southern Plains Discrete supercells

31 May/1 Jun 2013 2201–0055 Southern Plains Discrete/embedded supercells

29 Apr 2014 1903–2358 Mid-Atlantic Embedded supercells, bow echoes, multicells

8 Jun 2014 0203–0800 Southern Plains Supercells, multicells, QLCS with large trailing region

28 Jul 2014 0804–1501 New England Multicells and bowing segments

13 Aug 2014 0302–1203 Mid-Atlantic Embedded multicells/line segments

11 Dec 2014 1002–1401 Northern CA Shallow line segments

24 Dec 2014 1903–2159 OH Valley Thin QLCS

3 Jan 2015 1803–2158 Lower MS Valley QLCS and bowing segments

9/10 Apr 2015 2201–0201 Upper Midwest Discrete/embedded supercells

23/24 May 2015* 1800–0201 Southern Plains Squall line and supercells

29 May 2015 0204–0901 Southern Plains QLCS with large trailing region

23 Jun 2015* 2003–2357 Mid-Atlantic Bow echo

1 Jul 2015 0048–0701 Mid-Atlantic Multicells and small bowing segments

1 Aug 2015 1600–2100 ME Supercells and small bowing segments

2 Aug 2015 1704–2257 Upper Midwest Supercells and bow echoes

6 Aug 2015 1842–2058 NC Multicells

8 Aug 2015* 0000–0356 Central Plains Supercells and QLCSs

17/18 Aug 2015 1800–0058 Southeast Multicells

25 Aug 2015 0703–1056 Northeast Multicells

30 Aug 2015 2304–0259 AZ Single cells

3 Sep 2015 1503–1858 MI Multicells

8 Sep 2015* 1902–2302 Southern CA Terrain-induced single cells

27/28 Dec 2015 2201–0200 North TX Supercells and multicells

4 Apr 2016 1900–2301 OK QLCS and embedded supercells

9/10 May 2016 1906–0104 Southern Plains Supercells and multicells

16/17 Jun 2016 2005–0004 Mid-Atlantic Supercells and QLCS
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convection (in which only a few samples are available),

they provide some framework for identifying anoma-

lously high ZDR.

Following the initial relationship approximation,

TRENDSS then enters an application step, in which a

ZDR anomaly value is calculated for each valid range

gate (thresholds in Table 1). This value is simply the

difference between the range gateZDR and the expected

ZDR, which is a function of the ZH bin. TRENDSS

normalizes this anomaly by 1s (also a function of theZH

bin). For example, the solid line in Fig. 4 represents

3s above the expected ZDR (the dashed line). Higher

values suggest a greater likelihood that the range gate is

characterized by ongoing size sorting, potentially sig-

naling the presence of an updraft and/or ZDR arc sig-

nature. Thus, this normalized anomaly value is the

fundamental output of TRENDSS. Figure 5 is an ex-

ample of ZH, ZDR, and resultant normalized anomaly

data from one elevation scan.

While there is no clear anomaly threshold that can

isolate size sorting gates across an array of precipitation

regimes, analysis of over 20 cases (Table 2) across

diverse geographic regions, seasons, and precipitating

regimes suggests a threshold value around 3s has the

greatest utility in highlighting size sorting gates. To

further solidify this conclusion, our objective verifica-

tion discussion below (section 3) includes analysis of

values starting at 1s.

To minimize false detections (potential causes dis-

cussed in section 4), a median filter is implemented on

each elevation scan to reduce the presence of noisy data

as well as to smooth and emphasize zones of legitimate

size sorting. Range gates beyond 20 km from a

WSR-88D were smoothed with a three-by-three median

filter window (i.e., replacing the central range gate with

the median value of its adjacent eight gates). At ranges

closer than 20km where radar gate widths are smaller,

the window size is increased to five-by-five (25 total

gates) to boost the magnitude of smoothing. This aids in

mitigating noisy data and false detections (e.g., initially

unfiltered clutter, biota) that are more prevalent closer

to the WSR-88D in nonmountainous regions (e.g.,

Hubbert et al. 2009).

c. Multiradar design

With TRENDSS operating on all elevation angles of

a volume scan, the wealth of additional data can be

considerably difficult to integrate into established radar

analysis and warning-decision processes of various users

(National Weather Service offices, TV meteorologists,

air traffic control, etc.). Therefore, TRENDSS incorpo-

rates data from multiple radars to produce one primary

product (discussed below) that can reduce workload on

users. The algorithm core operates uniquely on each

elevation scan of every WSR-88D within a specified

domain. In this manner, ZH–ZDR relationship data are

not blended among different radars, which would likely

hinder the algorithm’s ability to identify size sorting. For

example, if allZH–ZDR pairs are blended into only a few

relationships, varying ZDR biases among different ra-

dars would produce large standard deviation values (for

each ZH bin), precluding the algorithm from highlight-

ing anomalously high ZDR values. Section 4 expands on

TRENDSS’s immunity to ZDR miscalibration.

Each valid range gate within the specified domain

contains spatial information attributes, such that a

three-dimensional volume of ZDR anomaly data is

available across the entire domain. For consistency with

the approximate volume scan time of a singleWSR-88D

(when it is operating in a standard convective pre-

cipitation mode), TRENDSS maintains data points

within this volume if its associated elevation scan

timestamp is no more than 5min old. Thereafter, the

data are discarded. Those data within 5min of the cur-

rent time are composited onto a Cartesian grid of

0.018 latitude 3 0.018 longitude spacing at 2-min

intervals. In other words, the maximum value in a vertical

column above each grid box is mapped to a single planar

view every 2min. These composited data compose the

FIG. 4. A hexbin plot representing filteredZH andZDR data from

a 5.08 elevation scan by the Sterling, VA (KLWX), radar at

0331 UTC 1 Jul 2015. The frequency of ZH–ZDR points falling in

each hexagon is represented by its corresponding color. The dashed

green and solid blue lines indicate the expected/mean ZDR and

three standard deviations above the mean, respectively, for each

5-dB bin. Note the points above the blue line—TRENDSS con-

siders these to be size sorting gates.
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primary TRENDSS product tested below. Figure 6 offers

an example of the mosaicked product from 23 June 2015

in the Mid-Atlantic (one of the four cases chosen for ob-

jective verification below).

3. Objective verification and case examples

In addition to the subjective analysis performed on

cases in Table 2, four cases were chosen for more rig-

orous objective testing. We selected these cases to test

TRENDSS’s performance across a diverse range of re-

gions, convective regimes, and cell modes to collect

insight regarding the algorithm’s ability to predict

convective trends on warning/nowcast time scales.

Subsequently, this insight can mold best practices for

potential operational implementation within the Na-

tional Weather Service and other members of the

weather enterprise.

We chose the 23May 2015 southern Great Plains case

for its large areal coverage and diverse convective

modes. Additionally, the regime was considerably more

tropical in nature than is typical for the region, with the

0000 UTC 24 May 2015 Norman, Oklahoma, sounding

sampling 44.48mm of precipitable water. According to

SPC sounding climatology (Rogers et al. 2014), this

value is the record maximum for the date. The 23 June

2015 Mid-Atlantic case was selected to test a high-impact

convective system along the East Coast (NOAA/NCEI

2015), while the 8 August 2015 High Plains case was

chosen for both its diversity in convective modes and its

FIG. 5. The 23 Jun 2015 0.58 scans from the Sterling, VA (KLWX), radar of (a) ZH, (b) ZDR,

and (c) standardizedZDR anomalies. Note the higher anomaly values along the leading edge of

convection. These are stronger indications of size sorting.
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aviation implications—a Delta Air Lines flight encoun-

tered a rapidly developing updraft over Nebraska and

experienced significant hail damage, necessitating an

emergency landing in Denver (NTSB 2015). Last, the

8 September 2015 California case was chosen for its

unique geographic region and terrain influence.

For each case, we used the closest hourly 13-km RAP

analysis grid to calculate the mean wind field across the

cloud-layer depth by averaging theU andV components

at all available levels between the lifted condensation

level (LCL) and equilibrium level (EL; Fig. 7a). At each

2-min time interval, three sets of TRENDSS objects

were identified by region growing (Jain 1989) contiguous

areas starting from a seed grid cell with a minimum

TRENDSS value of 1, 2, or 3s (Fig. 7b). A 10-min forecast

plume polygon was created by advecting the TRENDSS

object downstream along the mean wind direction vector

(Fig. 7c). The Multi-Radar Multi-Sensor (MRMS; Smith

et al. 2016) reflectivity at lowest altitude (RALA) product

was used to define thunderstorm intensity. It is defined as

the closest reflectivity value to Earth’s surface that is not

terrain blocked and is used by forecasters to diagnose

precipitation intensity near the ground. RALA values at

t5 0min were collected to quantify the initial state of each

plume (Fig. 7d). The final state of each plume was de-

termined by spatially accumulating the maximum RALA

FIG. 6. The 23 Jun 2015 (a) composite reflectivity at 2227UTC, (b) composite reflectivity and

TRENDSS at 2227 UTC, and (c) composite reflectivity at 2248 UTC. Note the TRENDSS

identifications near the gap in reflectivity in (b), followed by the expansion of reflectivity in this

area shown in (c).
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measured in each grid cell over the next 10min (Fig. 7e).

By comparing these two states, we can quantify the re-

lationship between TRENDSS objects exceeding certain

s thresholds and patterns in convective development.

Objective analysis

Despite being chosen from diverse geographical re-

gions and over a span of several months, TRENDSS

objects of at least 3s exhibited skill in all four cases

tested. These four cases encompassed 32 292 individual

cell objects, from which RALA plumes were generated

10min downstream. In 30 977 of these cases (;95.9%

of total), the median RALA within a 10-min plume

was equal to or higher than the initial median RALA.

Additionally, 16 614 objects (;51.4%) exhibited an

increase in median RALA by at least 5 dBZ. Figure 8

displays this bulk signal, suggesting that TRENDSS

objects can be a reliable predictor for nowcasting

FIG. 7. An automated workflow to verify the TRENDSS algorithm. The (a) mean wind field over the cloud-layer

depth and (b) TRENDSS objects exceeding 1, 2, or 3s (shown here) are used to create 10-min polygons of fore-

casted storm location. A comparison of the (d) RALA values at t5 0min to the (e) spatially accumulated RALA

values at t5 10min allows for an evaluation of the effectiveness of different TRENDSS sigma levels at nowcasting

downstream convective maintenance and intensity.
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downstream maintenance and/or intensification of

reflectivity.

Lowering the threshold to 1s produced an additional

47904 objects, of which 43975 (;91.8%) also preceded a

change in median RALA of at least 0dBZ. Initially, these

statistics might suggest lowering the threshold to improve

algorithm performance. However, only 12566 of these

objects (;26.2%) preceded an increase of at least 5dBZ.

Figure 8 shows clustering of sub-3s objects around lower

values of median RALA difference. Meanwhile, higher

values exhibit a slightly greater likelihood of convective

maintenance and/or intensification. Therefore, lower-s

objects appear to lack a worthwhile signal for down-

stream propagation/intensification, especially considering

the large increase in data that forecasters would have to

consider if the threshold is lowered.

Of note, the fourth case (Fig. 8d) represents orogra-

phically enhanced convection over Southern California.

Convective cells and their associated TRENDSS objects

remained somewhat sparser than they were with the other

three cases, resulting in a reduction of data points and

making any relationship between maximum values and

reflectivity changes more difficult to ascertain. Further-

more, we acknowledge that changes of approximately

5–10dBZ do not seem noteworthy; however, considering

the large number of objects for each case (on the order of

thousands), even a modest increase in median value

suggests a consistent signal for intensification.

FIG. 8. Scatterplots and related histograms where each data point represents a single TRENDSS object and

related downstream plume (characterized by a maximum TRENDSS value and the change in median RALA over

10min). Points to the right of the dashed black line in each plot correspond to objects with a maximum TRENDSS

value exceeding 3s. The cases are (a) 23/24May, (b) 23 Jun, (c) 8Aug, and (d) 8 Sep 2015. Formore details on these

cases, see Table 2.
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To further investigate this relationship, maximum

TRENDSS values were binned to produce univariate

kernel density estimate (KDE) plots of the changes in

median RALA value (Fig. 9). The KDE plots utilized a

Gaussian kernel and Scott’s method (Scott 1992) for

determining bandwidth size. In the first three cases

(Figs. 9a–c), the peak of each curve moves from near

0dBZ to approximately 5dBZ, once again highlighting a

modest positive correlation between TRENDSS values

and the downstream evolution of reflectivity. Meanwhile,

the fourth case (Fig. 9d) exhibits only a very weak re-

lationship, which is likely caused by fewer samples in-

creasing uncertainty with the density estimates, especially

at higher maximum TRENDSS values.

Overall, TRENDSS appears to be a reliable identifier

of size sorting and the propagation component of storm

motion. Our testing methods considered the advection

component of storm motion (via the 10-min plume

based on mean convective layer wind), such that the

addition of the propagation component (via the actual

TRENDSS object) offers a robust estimate of total

storm motion. Indeed, these results lend confidence in

the algorithm’s ability to assist in the nowcasting of storm

motion. Regarding prediction of cell intensification, our

verification methods imply that compositing size sorting

identification (in the manner of TRENDSS) possesses

some skill in forecasting very near-term strengthening.

Nonetheless, future observational/model analyses com-

paring the estimated magnitude of sorting with updraft

velocities are needed to further elucidate this relationship.

Furthermore, size sorting from processes other than up-

drafts, while much less common, will be highlighted by

TRENDSS. For example, size sorting within a ZDR arc

signature will frequently be identified, and this signature

is not indicative of cell propagation/intensification

(although it can signal increasing storm-relative helicity,

which influences propagation). Benefits of such identi-

fication are discussed in section 4.

We acknowledge that uncertainty exists in this anal-

ysis, as some cases may be impacted by unrelated con-

vection moving through the downstream plume of the

original object. Thus, we constrained the plume to only

10min downstream, with a buffer of 1 km to focus on

very near-term cell propagation. By constraining the

plume to 10min, we also reduce the potential for per-

sistent, deviant propagation to undermine our verifica-

tion methods. In other words, the 10-min plume is

testing propagation predicted by the specific TRENDSS

object identified at t 5 0. A longer plume would likely

require more sophisticated object tracking (and more

dynamic plume generation) tomaintain robust verification

methods. While we did not perform such an analysis,

future work could investigate the temporal continuity

of TRENDSS objects, perhaps offering new avenues for

storm motion prediction. Finally, we aimed to avoid

‘‘cherry picking’’ by automating the identification

of TRENDSS objects and downstream plume creation.

Another consideration is that our verification methods

do not account for missed events (i.e., we do not identify

storms without TRENDSS objects). Although we are

certain that some storms do intensify without radar

identification of size sorting (e.g., due to masking of

sorting gates), our subjective analysis of the cases in

Table 2 indicates that cells are not as likely to maintain

or increase intensity if their corresponding standardized

ZDR anomalies remain below 3s. However, future

FIG. 9. Kernel density estimates of the 10-min change in median

RALA, binned by maximum TRENDSS value, for (a) 23/24 May,

(b) 23 Jun, (c) 8Aug, and (d) 8 Sep 2015. The probabilities range from

0 to approximately 0.15. For more details on these cases, see Table 2.
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analysis of the performance of TRENDSS should more

formally investigate cells that lack size sorting signals.

4. Algorithm strengths and weaknesses

The primary motivation behind TRENDSS is the

automated detection of size sorting via the synthesis of

three polarimetric fields—ZH, ZDR, and rhv. The goal of

this algorithm is to reduce analysis workload on fore-

casters, while simultaneously leveraging the microphysical

information of polarimetric radar for improved near-term

prediction of convective trends. We understand that the

integration of such automation into established radar

analysis routines can prove difficult if an algorithm proves

too complex (i.e., difficult to understand) and/or is fraught

with conditions or exceptions for its proper use. Therefore,

we designed TRENDSS in a manner that minimizes some

issues that can plague other algorithms.

a. Strengths

1) IMMUNITY TO ZDR BIAS

While National Weather Service meteorologists and

technicians strive to maintain proper ZDR calibration of

the WSR-88D fleet, calibration within 60.1dB (the pre-

cision required for accurate quantitative precipitation es-

timation algorithms; Ryzhkov et al. 2005) has proven

challenging. Therefore, forecasters and other users occa-

sionally are forced to interpret biasedZDR data, hindering

radar analysis during potentially fast-paced warning op-

erations. This drawback must be considered when de-

signing or using an algorithm incorporating ZDR data. A

benefit of TRENDSS is its utilization ofZDR anomaly data

based on an expected value calculated from local data. By

doing so, it incorporates any ZDR bias that may exist,

rendering the algorithm immune to miscalibration. For

example, if a radar is plagued by a positive 0.5-dB ZDR

bias, the expected (mean) ZDR values for each bin will

accordingly increase 0.5dB, and the standardized anoma-

lies will remain unchanged. Therefore, unlike many other

polarimetric-based algorithms, TRENDSS data are not

degraded by poor ZDR calibration.

2) MOSAICKING/MULTIRADAR DESIGN

Developed within the WDSS–II/MRMS paradigm,

TRENDSS incorporates polarimetric data from multi-

ple radars, thereby offering improved spatiotemporal

coverage. Moreover, while the viewing angle of one

radar may be impacted by differential attenuation or

nonuniform beam filling (NBF), another radarmay have

an unobstructed view of the storm cell of interest. The

second radar, thus, can provide meaningful input to the

TRENDSS algorithm. Also, during the compositing

process, it is unlikely that local TRENDSS data impacted

by differential attenuation or NBF from the first radar

would mask more accurate data from the second radar.

Except in rare instances of anisotropic blockage by trees,

towers, and other thin objects, differential attenuation

would produce negatively biased radials of ZDR data,

leading to negative anomalies in TRENDSS. Because of

their negative values, these data points would be over-

ridden by the second radar’s data in the compositing pro-

cess. Meanwhile, gates characterized by excessive NBF

(and an attendant reduction of data quality down radial)

would likely be filtered by rhv thresholds within the initial

TRENDSS preprocessing steps. As such, most radar arti-

facts are unlikely to contaminate or mask legitimate size

sorting detections by a second radar.

3) AUTOMATED ZDR ARC DETECTION

Although the original motivation for TRENDSS is

based in cell motion prediction, automated ZDR arc

identification presents a noteworthy operational oppor-

tunity. Manual identification of ZDR arcs within the

fast-paced convective warning environment can prove

challenging. Therefore, TRENDSS’s ability to highlight

this feature is a considerable achievement. Figure 10 il-

lustrates this ability with a supercell south of Dallas,

Texas, at 2358 UTC 26 December 2015. The algorithm

highlights aZDR arc in Fig. 10c, suggesting the near-storm

environment was characterized by ample storm-relative

flow (and likely helicity). Three minutes after this radar

image, a tornado developed in Midlothian, Texas, even-

tually producing EF-3 damage (NOAA/NCEI 2015).

Although we stress thatZDR arcs do not explicitly predict

tornadogenesis, they can signal near-storm environments

favorable for stronger low-level mesocyclones, which can

increase the probability of tornadogenesis.

b. Weaknesses

1) RADIALS OF NBF OR DIFFERENTIAL

ATTENUATION

The algorithm utilizes rhv to filter data from melting

hydrometeors, diverse ice crystal habits, non-Rayleigh

scattering, low signal-to-noise ratio, NBF, and so on.

These occurrences can make size sorting detection quite

difficult, and thus gates characterized by these features

are masked. However, radially oriented zones of low rhv
due to NBF may mask downstream zones of size sorting

if downstream rhv is reduced below algorithm thresholds

(Table 1). If no other radar data are available, then

detection of this size sorting will be impossible. Simi-

larly, differential attenuation can also render down-

radial detection impossible. Excessive attenuation of

power within the horizontal channel will negatively bias
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ZDRmeasurements down radial. If the attenuation is great

enough, size sorting gates will be represented by ZDR

values near/below the expected value from the local re-

lationship, thereby rendering detection of size sorting im-

possible if there are no additional radar data. In turn, users

of TRENDSS data should be aware of the potential for

missed identifications in areas of sparse radar coverage.

Figure 11a illustrates both differential attenuation and

NBF down radial of a heavy precipitation core.

These issues will be magnified for users implementing

only a single-radar composite of ZDR anomaly data. At

closer ranges, radar analysis benefits from improved

spatial resolution and lower potential for gates to be

impacted by differential attenuation and/or NBF. With

increasing range, single-radar ZDR anomaly data will

suffer from the same issues (e.g., beam broadening, in-

creasing altitude) that impact other radar data. There-

fore, radar operators should be especially aware of the

decreasing performance of single-radar ZDR anomaly

algorithms at more distant ranges from radar.

2) ICE CRYSTAL CONTAMINATION

Often, ice crystals exhibit reduced rhv and ZH values,

due to their diverse shapes and smaller sizes. Therefore,

gates dominated by these scatterers are typically filtered

and not passed downstream to the algorithm core. On

infrequent occasion, however, the defined filters are not

strict enough to remove all range gates dominated by ice

crystals. These instances present a challenge, in that

pristine crystals can exhibit highZDR values (due to their

oblate alignment during descent), which TRENDSS

interprets as anomalously high. In turn, crystals can

masquerade as detections of impending convective

propagation and/or intensification. Note the TRENDSS

identifications along the fringes of stratiform pre-

cipitation in Fig. 11b. Analysis of this case suggested

little to no convectively enhanced size sorting.

While further tightening of filter thresholds would be

an intuitive step to alleviate this issue, testing on cases in

Table 2 suggests tightening beyond current thresholds

causes excessive masking of legitimate size sorting sig-

natures. Therefore, the current thresholds appear to

offer a reasonable compromise to filter as many ice

crystal gates as possible, while maintaining legitimate

size sorting. Moreover, any remaining contamination is

further reduced by median filtering. Any residual false

alarms are often transient and relegated to the edges of

stratiform precipitation shields, such that they should be

relatively easy for a forecaster to identify manually.

Users of TRENDSS data should factor in the longevity,

magnitude, and relative location of size sorting de-

tections to ensure greater accuracy in near-term pre-

diction of convective trends.

FIG. 10. The 26 Dec 2015 0.58 scans from the Dallas/Fort Worth,

TX (KFWS), radar of (a)ZH, (b)ZDR, and (c) TRENDSS overlaid

on ZH at 2358 UTC for a supercell south of Dallas, TX. The

southwest–northeast-oriented corridor of high TRENDSS values

along the forward-flank reflectivity gradient of the supercell in-

dicates the presence of a ZDR arc.
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3) DIFFERENTIAL SEDIMENTATION

In nascent precipitating cells, initial size sorting dis-

tributions are a by-product of differential sedimenta-

tion, as larger raindrops descend more rapidly than

smaller ones do. TRENDSS is designed to capture all

size sorting; therefore, differential sedimentation is of-

ten identified in new cells. Figure 11c gives an example

of such an instance. These cells may not have much

potential for intensification, but transient ZDR anoma-

lies over 3s may be realized for 5–10min at lower ele-

vations. Nonetheless, if a sustained, vigorous updraft is

present, TRENDSS should maintain higher anomalies

(both in composite and height) for a longer duration.

Therefore, users should place the greatest probability of

intensification on cells with persistent, high anomalies

(on the order of tens of minutes).

5. Conclusions

Forecast and thunderstorm warning operations are

becoming increasingly nuanced in the weather enterprise,

owing to a greater focus on decision support services,

impacts-based forecasting, and probabilistic warnings

(e.g., Rothfusz et al. 2018). In turn, forecast products

must continually leverage the greater detail offered by

the latest observational andmodel data. The TRENDSS

algorithm aims to do so by capitalizing on hydrometeor

shape information provided by ZDR. By dynamically

estimating ZH–ZDR relationships and identifying areas

of anomalously high ZDR, the algorithm can highlight

ongoing raindrop size sorting, often portending down-

stream convective evolution. Moreover, the local nature

of the relationships renders the algorithm immune to

ZDR miscalibration.

Initial subjective and objective analysis indicates that

the algorithm performs reliably in emphasizing areas of

new updrafts, related directions of propagation, and

potential for near-term intensification. In numerous

cases, cells would develop (based on various reflectivity

metrics) in the direction of TRENDSS identifications.

We believe such information can be useful for warning

operations and decision support services by empowering

forecasters to make decisions such as the shape of

warning polygons with more confidence. Critical to this

utility, TRENDSS serves as a new visualization of po-

tential updraft location, which forecasters can use to

FIG. 11. Examples of radar and meteorological features that can be challenging for the TRENDSS algorithm. This includes

(a) nonuniform beam filling (region annotated in black) from the Hastings, NE (KUEX), radar at 0227 UTC 17 Jun 2017, (b) ice crystal

contamination from the Upton, NY (KOKX), radar at 1100 UTC 13 Aug 2014, and (c) differential sedimentation (region annotated in

black) from the Sterling, VA (KLWX), radar at 0441 UTC 1 Jul 2017.
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diagnose deviant motion, forward acceleration, and

so on.

The algorithm is not without needs for future devel-

opment. While it does attempt to tailor ZH–ZDR re-

lationships to local data (i.e., unique relationships for

each stage on every elevation angle), this method can

still combine varying precipitation regimes into one

relationship, rendering anomaly detection less effec-

tive. Therefore, future iterations of the algorithm

could include relationships tailored to various sectors

discriminated by precipitation regime, such as using

the MRMS surface precipitation type product (Qi

et al. 2013; Zhang et al. 2016).

Another target of opportunity is the incorporation of

height information into the algorithm.While the current

iteration can struggle to differentiate updrafts fromZDR

arcs (by compositing data), vertical consistency checks

for ‘‘columns’’ of size sorting, similar to the manner of

the ZDR column algorithm (Snyder et al. 2015), could

output amaximum height of sorting for each grid box. In

turn, the algorithm would potentially discriminate be-

tween deeper updrafts and lower-level ZDR arc signa-

tures. Moreover, such discrimination would solidify

automated ZDR arc detection, further enhancing sup-

port for warning forecasters and mesoscale analysts.

More intensive observational and modeling exami-

nations that compare ZDR anomalies and vertical ve-

locity are also needed to establish the robustness of the

relationship between TRENDSS and updraft location.

Modeling updrafts and their related polarimetric sig-

natures (followed by a TRENDSS-like analysis of the

simulated polarimetric field) would offer insight re-

garding these anomalies and vertical motion, perhaps

guiding further refinement of the algorithm. Indeed, a

merging of the current technique with a vertical in-

tegration such as that of the ZDR column algorithm may

yield a comprehensive, automated updraft detection and

visualization scheme that could benefit the weather en-

terprise considerably.
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Conway, J.W., andD. S. Zrnić, 1993: A study of embryo production

and hail growth using dual-Doppler and multiparameter radars.

Mon. Wea. Rev., 121, 2511–2528, https://doi.org/10.1175/1520-

0493(1993)121,2511:ASOEPA.2.0.CO;2.

Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R.

Kumjian, and M. Xue, 2014: Low-level ZDR signatures in su-

percell forward flanks: The role of size sorting and melting of

hail. J. Atmos. Sci., 71, 276–299, https://doi.org/10.1175/JAS-

D-13-0118.1.

——, ——, and M. R. Kumjian, 2015: Does wind shear cause hy-

drometeor size sorting? J. Atmos. Sci., 72, 340–348, https://

doi.org/10.1175/JAS-D-14-0084.1.
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